All posts by GoodMo

Process for Making TransChromo Organisms

There are currently three main ways to insert genetic information into a higher plant: CRISPR-Cas9, using Agrobacterium tumefaciens, and a Gene Gun.

We will focus on the Gene Gun for this article. The problem with a Gene Gun is the expression. Randomly inserting a gene into an organism causes the expression to decline after time even after screening and selection.

We have gotten better at using the Gene Gun by also incorporating regulatory genes with the gene of interest, however, the placement of that gene is uncontrolled and would effect expression.

What is the solution? Insert a whole chromosome. Let’s say you want to insert a defense protein from Ampelocera hottlei into Ulmus americana, American Elm as a solution for Disease.

After DNA extraction restriction enzyme would be used to cut the DNA selectively. A marker would be used to identify the target gene. Electrophoresis would then separate the large piece of DNA with the target gene. This piece would then go through PCR amplification. The DNA then would be coated onto a gold particle and shot into the target organism, American Elm.

Assuming that the gene gun insertion process would allow this large piece of DNA the benefits of doing this would be that most regulatory genes would also go with the target gene and expression would be preserved. In addition, other genes may carry other unknown benefits to the target organism.

How to rate a GMO

If we gave a GMO a score what would it be? How would we rate a GMO or any technology? We rate based on the three criteria:

Good for People: Improving the physiological health of humans, and is not detrimental to their health.

Good for Planet: Increases the biological diversity and biomass potential (more things can live)

Good for Profit: Is useful, creates value by addressing a need.

You can’t have one measurement for each  category. At least two things need to be measured. These measurements have to focus on both large and small scales. An example of why one measurement would be bad is when a compound causes pollution but cures a disease. While solving the small problem, curing disease, it creates a larger problem of pollution. Pollution would then cause problems to anyone around.

Rating GMO

Super Good is a score of 6.

Good is a score of 4 to 6 with no negative values.

Little Good is a score of 2 to 4 with no negative values.

Ok is a score of 0 to 2 with no negative values.

Little Bad is a Positive score with negative values.

Bad is a score of -1 to -5

Evil is a score of -6.

What is a GMO?

Genetically Modified Organism or GMO are living things that have been genetically altered using biotechnology. The exact point at which something becomes a GMO with this definition is a little tricky in part because it relies on the use of technology. What you define as biotechnology can significantly impact what is considered a GMO. Some thought questions:

  1. Is breeding a biotechnology and offspring of breeding a GMO?
  2. Is selection of offspring or sperm and egg based upon genetic screening that shows you the offsprings traits produce a GMO?
  3. Is mutating a organism by exposing it to radiation then genetic screening to see any new traits acquired from the radiation a GMO?
  4. Does DNA methylation, (when adding CH4, one carbon and 4 hydrogen to DNA can inhibit a gene from being expressed) produce a GMO?
  5. Is adding an additional copy of a gene to inhibit a trait (iRNA, a form of knockout) produce a GMO?
  6. Is taking out a gene (CRISPR) produce a GMO?
  7. Is inserting a gene from another organism produce a GMO?
Photo from: Idaho National Laboratory (

As you can see there is a gradient to what we might consider to be a GMO. The point of this is not to confuse you into thinking a GMO is what it isn’t, but to understand it better. If you are dying to find out the answer; most countries and people would say a GMO would be everything after 3 or 4.

Biotechnology Heals then Burns Business Models

Many companies have started focusing on biotechnology and incorporating it into their business model. After Genentech emerged with the first compound produced from bacteria (insulin) pharmaceutical companies started partnering with biotech companies. You could call this the first wave of biotech adoption. The reason for this was that the return on resources spend to develop new drugs was declining. Pharmaceutical companies are spending more to develop less drugs. There are many reasons for this including: easy drug targets already developed, drugs have to be more profitable than the cost of going through approval, and drug companies want drugs that everyone can take (Blockbuster drugs). Pharmaceutical companies couldn’t develop drugs that would make a lot of money while still using the same technology, so in the 1990’s they turned to biotechnology companies to help them make drugs. This healed the business model of the pharmaceutical companies, however now it is threatening their existence like never before.

Photo from: NTNU, Faculty of Natural Sciences and Technology (

Before the existence of biotechnology companies (companies that focus on new technology), pharmaceutical companies only competed against themselves to make drugs. When Genentech created a drug without being a pharmaceutical company. It licensed it’s ability to create insulin to other companies so Genentech didn’t need to have the capacity to produce it. Biotech companies can now compete with pharmaceutical companies, then why are pharmaceutical companies still around? They will probably turn into what record and network television companies are today. These companies are still around because they have three things: access to an audience, networks, and resources. Record companies have relationships with radio stations and can encourage them to listen to and play a song. Television companies can have millions of people watching a new show. Both can gather resources such as writers, producers, and talent to make new products. And both have more resources than a kid with a youtube channel; recording studios, sets, props, and cash. Pharmaceutical companies will probably change their business model to be more like this.

Just like record and television companies, pharmaceutical companies have all three things: access to audience, network, and resources. Pharmaceutical companies have relationships with doctors that biotech companies do not have. They can introduce drugs to these doctors and so that them prescribe them to patients. They are fluent in navigating the governmental regulation and have cash on hand. Currently pharmaceutical companies are buying biotech companies when they discover a promising drug or drug target, but as pharmaceutical companies become more averse they will want to buy part or all of the licensing rights from these companies. This will push the risk onto the biotech companies and require them to adapt and implement new technology just like they always have.